
A Taxonomy of Data Prefetching Mechanisms

Surendra Byna Yong Chen Xian-He Sun
Department of Computer Science

Illinois Institute of Technology, Chicago, IL 60616, USA
{sbyna,chenyon1, sun}@iit.edu

Abstract

Data prefetching has been considered an effective
way to mask data access latency caused by cache
misses and to bridge the performance gap between
processor and memory. With hardware and/or
software support, data prefetching brings data closer
to a processor before it is actually needed. Many
prefetching techniques have been proposed in the last
few years to reduce data access latency by taking
advantage of multi-core architectures. In this paper,
we propose a taxonomy that classifies various design
concerns in developing a prefetching strategy. We
discuss various prefetching strategies and issues that
have to be considered in designing a prefetching
strategy for multi-core processors.

1. Introduction

Data prefetching is a data access latency hiding
technique, which decouples and overlaps data transfers
and computation. In order to reduce CPU stalling on a
cache miss, data prefetching predicts future data
accesses, initiates a data fetch, and brings the data
closer to the computing processor before it is
requested.

A data prefetching strategy has to consider various
issues in order to mask data access latency efficiently.
It should be able to predict future accesses accurately
and to move the predicted data from its source to
destination in time. Several proposed strategies predict
future data accesses using recent history of data
accesses from which patterns can be recognized [4][5]
[8][10], using compiler and user provided hints
[14][18], analyzing traces of past execution of
applications or loops [12], and running a helper thread
ahead of actual execution of an application to predict
cache misses [1][11][20][21][27]. Among these
strategies, predicting future data accesses based on

recent history has been popular and partially
implemented at hardware level in existing processors.
Compiler and user provided hints are used in software-
level prefetching [13][16]. Helper-thread initiated
prefetching is becoming popular in multi-threaded and
multi-core processors. Prefetching data exactly in time
is a challenging task. Data should not be prefetched too
early or too late. In addition to considering what to
prefetch and when to prefetch aspects, complexity of
executing prefetching methods should be low in order
not to block actual processing.

Figure 1 shows various scenarios of implementing
prefetching strategies. In Scenario A, a prefetch engine
(PE) observes history of L1 cache misses and initiates
prefetch operations. In multi-threaded and multi-core
processors, pre-execution based approaches use a
separate thread to predict future accesses (scenario B).
A prefetching-thread pre-executes data references of a
main computation-thread and initiates prefetching data
into a shared cache memory (L2 cache) earlier than the
computation-thread. In memory-side prefetching
strategy, (scenario C) the prefetching-thread is
executed on an intelligent main memory, where a
memory processor pre-executes helper-threads. The
predicted data is pushed towards the processor. From

Figure 1. Prefetching scenarios

The International Symposium on Parallel Architectures, Algorithms, and Networks

978-0-7695-3125-0/08 $25.00 © 2008 IEEE
DOI 10.1109/I-SPAN.2008.24

19

The International Symposium on Parallel Architectures, Algorithms, and Networks

978-0-7695-3125-0/08 $25.00 © 2008 IEEE
DOI 10.1109/I-SPAN.2008.24

19

The International Symposium on Parallel Architectures, Algorithms, and Networks

978-0-7695-3125-0/08 $25.00 © 2008 IEEE
DOI 10.1109/I-SPAN.2008.24

19

these scenarios, it is evident that in addition to
predicting what and when to prefetch, sources,
destinations, and initiators of prefetching play primary
role in designing an effective prefetching strategy.

In this paper, we provide a taxonomy of prefetching
strategies that primarily captures design issues of
prefetching strategies. VanderWiel et al. [24] and Oren
[17] discussed the definitions of prefetching and
compared various prefetching strategies in the context
of single-core processors in their surveys. Their survey
provides a taxonomy addressing what, when, and
where (destination of prefetching) questions for
hardware prefetching and software prefetching. The
emergence of multi-thread and multi-core processor
architectures brought new opportunities and challenges
in designing effective prefetching strategies. We
propose a taxonomy of prefetching mechanisms based
on a comprehensive study of hardware prefetching,
software prefetching, prediction and pre-execution
based prefetching, and more importantly, strategies
that are novel to multi-core processors.

The rest of the paper is organized as following:
Section 2 presents the taxonomy to classify data
prefetching strategies. We briefly discuss the prospects
and challenges of prefetching on multi-core processors
in Section 3 and conclude our discussion in Section 4.

2. Taxonomy

We take a top-down approach to characterize and
classify the design issues of prefetching strategies.
Figure 2 shows the top layer of our classification,
which consists of the five most fundamental issues that
any prefetching strategy has to address: what data to
prefetch, when to prefetch, what is the prefetching
source, what is the prefetching destination, and who
initiates a prefetch.

2.1. What to prefetch?

Predicting what data to prefetch is the most
important requirement of prefetching. If a prefetching
strategy can predict the occurrence of future misses,
then prefetch instructions can be issued ahead and
bring that data by the time the cache misses.

To mask the stall time caused by cache misses
effectively, the accuracy of predicting what to prefetch
must be high. Predicting future data references
accurately is critical. Low accuracy leads to cache

pollution. Figure 3 shows a classification of predicting
what data to prefetch based on where it is implemented
and on various techniques.

2.1.1. Hardware controlled strategies. In hardware
controlled data prefetching, prefetching is
implemented in hardware. Various methods support
hardware controlled prefetching.

History-based prediction is the most commonly
used among hardware controlled data prefetching
strategies. In these strategies, a prefetch engine (PE) is
used to predict future data references and to issue
prefetching instructions. All the components of
prefetching are implemented within a processor and
they do not require any user interference. PE observes
the history of data accesses or the history of cache
misses to predict future accesses by a processor. We
discuss various algorithms used in history based
prediction in Section 2.1.4.

Runahead execution uses idle cycles or cores to run
instructions while a CPU is stalled or idle. Zhou [26]
proposed dual-core execution (DCE) approach uses an
idle core of a dual-core processor to construct large,
distributed instruction window and Ganusov et al.’s [6]
future execution (FE) uses an idle core to pre-execute
future loop iterations using value prediction.

Off-line analysis strategy is another hardware
controlled prefetching approach. Kim et al. [12]
proposed a method, where data access patterns are
analyzed for hotspots of code that are frequently
executed. This approach works well for applications
that refer to similar data access pattern.

2.1.2. Software controlled strategies. Software-
controlled prefetching [13][16] gives control to a
developer or to a compiler to insert prefetching
instructions into programs. From Figure 3, software
controlled prefetching can use compiler controlled
prefetching instructions or function calls in source
code or prefetching instructions inserted based on post-
execution analysis. Many processors provide support
for such prefetching instructions in their instruction
set. Compilers or application developer can insert these
prefetch instructions or built-in routines provided by

Figure 2. Five fundamental issues of prefetching

Figure 3. Predicting what data to prefetch

202020

compilers. Software-controlled prefetching puts
burden on developers and compilers, and is less
effective in overlapping memory access stall time on
ILP processors due to late prefetches and resource
contention [20]. Post-execution analysis can also be
used, where traces of data accesses are analyzed for
patterns.

2.1.3. Hybrid hardware/software controlled
strategies. Hybrid hardware/software controlled
strategies are gaining popularity on processors with
multi-thread support. On these processors, threads can
be used to run complex algorithms to predict future
access patterns. These methods require support from
hardware to run helper-threads that are specifically
executed to prefetch data. They require software
support to synchronize with the actual computation
thread. The helper-thread based prefetching strategies
either analyze history of data accesses of a
computation thread or pre-execute data intensive parts
of the computation thread that warms up a shared
cache memory by the time a raw cache miss occurs.

History based hybrid prediction strategies (Solihin
et al. [20]) analyze history of accesses to predict
future accesses and prefetch data. Pre-execution based
methods [15][19][1][7] using a helper-thread to
execute slices of code ahead of computation thread.

2.1.4. History-based prediction algorithms. From
Figure 3, hardware controlled, software controlled, and
hardware/software controlled approaches use
prediction algorithms based on history of data accesses
or cache misses. Prediction algorithms search for
various patterns among history of data accesses. Figure
4 shows a classification of data access patterns based
on spatial distance between accesses, their repeating
behavior and request size of accesses. Spatial patterns
are divided based on the number of bytes (also called
as stride) between successive accesses as contiguous,

non-contiguous, and combinations of both. Non-
contiguous patterns are further classified by the
property of strides between accesses. Data access
patterns repeat when loops or functions execute
repeatedly. We classify these patterns as either single
occurrence or repeating patterns. Request size in each
access may be fixed or variable. This classification
captures a wide range of data accesses.

Several prediction algorithms have been proposed
to find these patterns. Sequential prefetching [5]
fetches contiguous cache blocks by taking advantage
of locality. Stride prefetching approach [4] predicts
future accesses based on strides of the recent history.
Strided prefetching strategies maintain a reference
prediction table (RPT) to keep track of recent data
accesses. To capture repetitiveness of data accesses,
Markov prefetching [8] was proposed. Distance
prefetching [10] uses Markov chains to build and
maintain probability transition diagram of strides
among data accesses. Multi-level Difference Table
(MLDT) [22] uses time-series analysis method to
predict future accesses in a sequence, by finding the
differences in a sequence to multiple levels.

2.2. When to prefetch?

The time to issue a prefetch instruction has
significant effect on the overall performance of
prefetching. Prefetched data should arrive its
destination before a raw cache miss occurs. The
efficiency of timely prefetching depends on total
prefetching overhead (i.e. the overhead of predicting
future accesses plus the overhead in prefetching data)
and the time for the occurance of next cache miss. If
the total prefetching overhead exceeds the time of next
cache miss, adjusting prefetching distance can avoid
late prefetches. Figure 5 shows a classification of
various methods used in deciding when to prefetch.

Event based mechanism issues a prefetch
instruction on some event, such as a memory reference
or a cache miss or a branch or accessing a previously
prefetched data block for the first time. Prefetching on
each memory reference is also called Always prefetch.
Prefetch on miss is a common implementaion on
existing processors as it is simple to implement.

Figure 5. Predicting when to prefetch

Figure 4. Classification of data access patterns

212121

Tagged prefetching [3] initiates a prefetch instruction
when a data access hits previously prefetched data
block for the first time. Branch directed prefetching [3]
suggests that since branch instructions determine
which instruction path is followed, data access patterns
are also dependent upon branch instructions.

Chen et al. [4] have proposed using a lookahead
program counter (LA-PC). In loop codes, instead of
prefetching one iteration ahead, the lookahead
prediction adjusts prefetching distance using a pseudo
counter, called LA-PC that remains a few cycles ahead
of actual PC.

Software-controlled prefetching approaches require
either compiler or application developers to make
decision to insert prefetching functions early enough to
prefetch data. Mowry et al. [16] provide an algorithm
to calculate prefetching distance [13]. According to
this algorithm, prefetching instructions are called
strictly for data references that would cause cache
misses. In helper-thread based approaches, periodic
synchronization of computation thread with helper-
thread is required to prevent late prefetches or very
early prefetches. Kim et. al. [11] and Song et. al. [21]
use synchronization to prevent helper-thread execution
lagging behind computation thread.

In many applications data access bursts follow
certain pattern. By analyzing the time intervals, future
data bursts can be predicted to start prefetching.
Server-based push prefetching [22] uses prediction
based strategy to analyze when to prefetch.

2.3. What is the source of prefetching?

Memory hierarchy contains multiple levels
including cache memories, main memory, secondary
storage, and tertiary storage. Data prefetching can be
implemented at various levels of memory hierarchy.
Data can be prefetched between cache memories and
main memory, or between main memory and storage.
To design a prefetching strategy, it is necessary to
know where the latest copy of data is. In existing deep
memory hierarchies with write back policy, data can
exist at any level of memory hierarchy. In single-core
processors, prefetching source is usually the main
memory or lower level cache memory. In multi-core
processors, memory hierarchy contains local cache

memories that are private to each core and cache
memories that are shared by multiple cores. Designing
a prefetching strategy considering multiple copies of a
data in local cache memories may lead to data
coherence concerns, which is a challenging task. In
this paper, the focus of our discussion is limited to
cache and memory level prefetching.

2.4. What is the destination of prefetching?

Destination of prefetched data is another major
concern of prefetching strategy. Prefetching
destination should be closer to CPU than a prefetching
source in order to obtain performance benefits. As
shown in Figure 7, data can be prefetched either into a
cache memory that is local to a processor or into a
cache memory that is shared by multiple processing
cores, or to a separate prefetch cache. A separate
prefetch cache can be either private to a processor core
or shared by multiple cores.

While the best destination of prefetching data is the
private cache to avoid cache pollution, there are
various design issues that affect such prefetch strategy.
One of them is the small size of cache memory.
Prefetching data into this cache may cause cache
pollution. To reduce the cache pollution, a dedicated
buffer called prefetch cache [9] was proposed. In
multi-core processors, prefetching destination varies.
Each core may prefetch data to its private cache or its
private prefetch cache. Another scenario is that one of
the cores prefetches data into a shared cache (e.g.
helper-thread based pre-execution). Casmira et al. [2]
proposed a Prefetch Buffer Filter (PBF).

2.5. Who initiates prefetch instructions?

Prefetching instructions can be issued either by a
processor which requires data or by a processor that
provides such a service. The first method is also called
client-initiated or pull-based prefetching and the latter
is called push-based prefetching. Figure 8 shows a
further classification of pull-based and push based
strategies depending on where the initiator is located.

Figure 7. Destination of prefetching

Figure 6. Source of prefetching

222222

Pull based prefetching has been a common
approach of prefetching in single-core processors. In
this method, prefetching mechanism (prediction and
initiation) is within the processor. Multi-threaded
processors enable decoupling of data access from
computing. Helper-thread based prefetching [15][19]
are a couple of representative helper-thread based
prefetching strategies that pull data closer to a
processor from main memory.

In Push-based prefetching, a core other than the
actual computation core fetches data. Run-ahead
execution [6][26] and helper-thread based prefetching
methods [15][19] also can be run on a separate core on
processor side to push data into a shared cache, which
is used by the computation core.

Memory-side prefetching is relatively a new idea,
where a processor residing in the main memory pushes
predicted data closer to the processor [25]. Server-
based push strategy pushes data from its source to
destination without waiting for requests from processor
side. Data Push Server (DPS) [22] uses a dedicated
server to initiate and proactively pushes data closer to
the client in time.

Both (pull and push) methods have pros and cons.
Pull-based prefetching is limited by complexity. In
pre-execution based prefetching with the use of helper-
threads, synchronization is needed to initiate pre-
execution. Intuitively, with the assumption of same
prediction overhead and same accuracy as those of
client-initiated prefetching, push based prefetching is
better than pull-based prefetching methods since push
based prefetching moves the complexity of prefetching
outside the processor. Another benefit is that push
based prefetching is faster as main memory does not
have to wait for a prefetching request from the
processor. However, scalability of a memory processor
becomes an issue when numerous processing cores
have to be served in memory side prefetching. Server
based push prefetching solves this problem by using
dedicated server cores.

3. Prefetching for Multicore Processors

Designing prefetching strategies for multi-core
processors poses new challenges. These challenges
include multiple computing cores’ competing to fetch

regular data and prefetched data, while sharing
memory bandwidth. With single-core processors, main
memory accepts prefetching requests just from one
core. In multi-core processors, prefetching requests
from multiple cores may put more pressure on main
memory in addition to regular data fetch requests. For
example, the memory processor based solutions
[7][20] are not scalable to monitor data access history
or pre-execute threads and predict future references for
multiple cores. This problem can be solved by
decoupling data access from computing cores. In
Server-based push prefetching [23], we propose using
a dedicated server core to provide data access support
by predicting and prefetching data for computing
cores.

Another challenge of multi-core processor
prefetching is cache coherence. Multi-core processors
access the main memory, which is shared by multiple
cores and hence at some level in the memory hierarchy
they have to resolve conflicting accesses to memory.
Cache coherence in multi-core processors is dealt
either by directory-based approach or by snooping
cache accesses. Prefetching requests to shared data can
be dropped to reduce complexity of coherence.

Usage of aggressive prediction algorithms on
single-core processors has long been discouraged as
their complexity may become counter productive. With
large amount of computing available, transferring
complexity to idle or dedicated cores using Server-
based push prefetching architecture [23] is beneficial.

4. Conclusions

Performance gains of prefetching strategies depend
on various criteria. With the emergence of multi-core
and multi-threaded processors, new challenges and
issues need to be considered to prefetch data. In this
paper, we provide a taxonomy of the five primary
issues (what, when, destination, source, and initiator),
that are necessary in designing prefetching strategies.
We discuss each issue in detail, which defines the
design of a prefetching strategy using examples of
various prefetching strategies. We also discuss
challenges of prefetching strategies in multi-core
processors. To be effective, a prefetching strategy for
multi-core processing environments has to be adaptive
to choose among multiple methods to predict future
data accesses. When a data access pattern is easy to be
found, prefetching strategy can choose history-based
prediction algorithms to predict future data accesses. If
data accesses are random, using pre-execution based
approach would be beneficial. Our server-based push
prefetching selects prediction strategies considering
these challenges.

Figure 8. Initiator of prefetching

232323

Acknowledgements

This research was supported in part by National
Science Foundation under NSF grant EIA-0224377
and CCF-0621435.

References

[1] M. Annavaram, J. M. Patel and E. S. Davidson, “Data
Prefetching by Dependence Graph Precomputation”, in
the Proceedings of the 28th International Symposium on
Computer Architecture, pp. 52-61, 2001.

[2] J. P. Casmira and D. R Kaeli, “Modeling Cache
Pollution”, International Journal of Modeling and
Simulation, 19(2), pp. 132-138, 1998.

[3] Y. Liu, M. Dimitri, and D. R. Kaeli, “Branch-directed
and pointer-based data cache prefetching”, Journal of
Systems Architecture: the EUROMICRO Journal,
45(12-13), pp. 1047-1073, 1999.

[4] T.F. Chen and J.L. Baer, “Effective Hardware-Based
Data Prefetching for High Performance Processors,”
IEEE Transactions on Computers, pp. 609-623, 1995.

[5] F. Dahlgren, M. Dubois, and P. Stenström, “Fixed and
Adaptive Sequential Prefetching in Shared-memory
Multiprocessors,” Proceedings of International
Conference on Parallel Processing, pp. 156-163, 1993.

[6] I. Ganusov and M. Burtscher, “Future Execution: A
Hardware Prefetching Technique for Chip
Multiprocessors”, Proceedings of the 14th Parallel
Architectures and Compilation Techniques, 2005.

[7] W. Hassanein, J. Fortes, and R. Eigenmann, “Data
Forwarding through In-Memory Precomputation
Threads”, Proceedings of the 18th International
Conference on Supercomputing, 2004.

[8] D. Joseph and D. Grunwald, “Prefetching Using
Markov Predictors”, Proceedings of the 24th

International Symposium on Computer Architecture, pp.
252-263, 1997.

[9] N.P. Jouppi, “Improving Direct-mapped Cache
Performance by the Addition of a Small Fully-
Associative Cache and Prefetch Buffers”, Proceedings
of the 17th International Symposium on Computer
Architecture, pp. 364-373, 1990.

[10] G. Kandiraju and A. Sivasubramaniam, “Going the
Distance for TLB Prefetching: An Application-Driven
Study”, Proceedings of the 29th International
Symposium on Computer Architecture, 2002.

[11] D. Kim et al., “Physical Experimentation with
Prefetching Helper Threads on Intel’s Hyper-Threaded
Processors”, Proceedings of the International
Symposium on Code Generation and Optimization,
2004.

[12] J. Kim, K. V. Palem and W.F. Wong, “A Framework for
Data Prefetching using Off-line Training of Markovian
Predictors”, Proceedings of the 20th International
Conference on Computer Design, 2002.

[13] A. C. Klaiber and H. M. Levy, “An Architecture for
Software-controlled Data Prefetching”, Proceedings of
the 18th International Symposium on Computer

Architecture, pp.43-53, 1991.
[14] C.K. Luk and T.C. Mowry, “Compiler-based

Prefetching for Recursive Data Structures”, Proceedings
of the 7th International Conference on Architectural
Support for Programming Languages and Operating
Systems, 1996.

[15] C.K. Luk, “Tolerating Memory Latency through
Software-Controlled Pre-Execution in Simultaneous
Multithreading Processors”, Proceedings of the 28th

International Symposium on Computer Architecture,
2001.

[16] T. Mowry and A. Gupta, “Tolerating Latency through
Software-controlled Prefetching in Shared-memory
Multiprocessors”, Journal of Parallel and Distributed
Computing, 12(2), pp.87-106, 1991.

[17] N. Oren, “A Survey of Prefetching Techniques”, TR
CS-2000-10, University of the Witwatersrand, 2000.

[18] R. M. Rabbah, H. Sandanagobalane, M. Ekpanyapong,
and W.- F. Wong, “Compiler Orchestrated Pre-fetching
via Speculation and Predication”, Proceedings of the
11th International Conference on Architecture Support
for Programming Languages and Operating Systems,
pp. 189-198, 2004.

[19] A. Roth, A. Moshovos and G. S. Sohi, “Dependence
Based Prefetching for Linked Data Structures,”
Proceedings of the,8th International Conference on
Architecture Support fo Programming Languages and
Operating Systems, pp. 115-126, 1998.

[20] Y. Solihin, J. Lee and J. Torrellas, “Using a User-Level
Memory Thread for Correlation Prefetching”,
Proceedings of the 29th International Symposium on
Computer Architecture, pp. 171-182, 2002.

[21] Y. Song, S Kalogeropulos and P Tirumalai, “Design and
Implementation of A Compiler Framework for Helper
Threading on Multi-Core Processors”, Proceedings of
the 14th Parallel Architectures and Compilation
Techniques, pp. 99-109, 2005.

[22] Xian-He Sun, Surendra Byna, and Yong Chen, “Server-
based Data Push Architecture for Multi-processor
Environments”, Journal of Computer Science and
Technology (JCST), 22(5), pp. 641-652, 2007.

[23] X.H. Sun, S. Byna and Y. Chen, “Improving Data
Access Performance with Server Push Architecture”,
Proceedings of the NSF Next Generation Software
Program Workshop (with IPDPS '07), 2007.

[24] S. VanderWiel and D.J. Lilja, “Data Prefetch
Mechanisms”, ACM Computing Surveys, 32(2), 2000.

[25] C.L. Yang, A.R. Lebeck, H.W. Tseng and C. Lee,
“Tolerating Memory Latency through Push Prefetching
for Pointer-Intensive Applications”, ACM Transactions
on Architecture and Code Optimization, 1(4), pp. 445-
475, 2004.

[26] H. Zhou, “Dual-Core Execution: Building a Highly
Scalable Single-Thread Instruction Window”,
Proceedings of the 14th Parallel Architectures and
Compilation Techniques, 2005.

[27] C. Zilles and G. Sohi, “Execution-based Prediction
Using Speculative Slices”, in Proceedings of the 28th
International Symposium on Computer Architecture,
2001.

242424

